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ABSTRACT: Nitrosylation of the chelate—thiolate-con-
taining dinitrosyliron complex (DNIC) [(S(CH,),S)Fe-
(NO),]™ triggers nitric oxide (NO) activation to generate
the homoleptic nitrosyl {Fe(NO),}* DNIC [Fe(NO),]~
(1) made up of two nitroxyls (or two NO anions) attached
to a delocalized {Fe(NO),}° motif. The significantly
longer N3—03/N4—04 [1.380(12) and 1.280(12) A] and
Fel—N3/Fel—N4 [2.008(11) and 2.045(10) A] bond
distances reflect that N3—O3 and N4—04 of complex 1
may act as the nitroxyl-coordinated ligands. That is, the
electronic structure of the DNIC 1 is best described as a
{Fe(NO),}’ motif coordinated by two nitroxyl (NO~)
ligands.

Nitric oxide (NO), a small molecule exhibiting multiple
physiological functions such as vasodilation, neuronal
transmission, inflaimmation, immune system response, and
cancer remedy, is produced by NO synthases." The
dinitrosyliron complex (DNIC), the intrinsic NO-derived
species existing in various NO-overproducing tissues, is
known as one of two possible forms for the storage and
transport of NO in a biological system.” Nitrosylation of [Fe—
S] proteins and iron-containing proteins yielding protein-
bound DNICs and Roussin’s red esters (RREs) has been
intensely studied.’> A nitroxyl anion (HNO/NO), the one-
electron-reduced state of NO claimed to modulate contraction
and relaxation in normal/cardiac hearts in vivo, was proposed
to be produced by NO synthases in vitro.** Also, nitroxyl was
suggested to be an attractive candidate for the treatment of
heart failure.® In aqueous solution, HNO rapidly converting
into N,0 and H,0 was characterized.® In chemistry, syntheses
of the metal-bound HNO including (i) the selective oxidation
of coordinated hydroxylamine of [Re(CO);(NH,OH)-
(PPh;),][SO;CF;] producing ([Re(CO);(NH=O0)(PPh,),]-
[SO,;CF,;]) at low temperature,” (ii) protonation of the reduced
species of {Fe(NO)},” in the Enemark—Feltham electronic
notation, [Fe(tpp)NO] (tpp = tetraphenylporphyrinato dia-
nion) by phenol, yielding the proposed [Fe(tpp) (HNO)],® (iii)
hydride reduction of the nitrosyl ligand of the {Ru(NO)}°
[Ru(tpp) (NO)(1-Melm)]*, yielding the Ru-bound HNO,” and
(iv) NO conversion to HNO by means of a proton-coupled
electron-transfer reaction upon nitrosylation of [HCr-
(CO);CsMe;] were reported.'” In addition, HNO was
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proposed to be generated via the conversion of [Fe(LH)-
(NO),] to [Fe(L)(NO)] [L = S(CH,),NMe(CH,),NMe-
(CH,),S] triggered by the proton—electron-transfer reaction."’
Recently, the release of the distinct NO redox-interrelated
forms (NO*, NO, and HNO) derived from the DNIC
[(C,HgN),Fe(NO),]” (C;,HgN = carbazolate) modulated
by the incoming substitution ligands was demonstrated."”
Investigation of the transformation among chelate- and
monodentate-peptide-bound RREs and DNICs demonstrates
the importance of the chelating effect.'> We are aware that the
treatment of [Fe(CO);] with NO under high pressure (100
atm) for 3 days yielding [(Fe(NO);)*(NO)~] characterized by
IR and complex [RuCl(NO),(PPh;),]" having linear and bent
nitrosyl ligands (coordinated [NO~] and [NO'] ligands)
characterized by IR and single-crystal X-ray structure
determination were reported.14 In this contribution, the
synthesis and characterization of a {Fe(NO),}’ DNIC within
the homoleptic Fe(NO), anion, with NO as nitroxyl and
nitrosyl ligands within a single structure, were uncovered
{[PPN][Fe(NO),] (1)}.

In contrast to the facile conversion of monodentate—thiolate-
containing [(SEt),Fe(NO),]™ into [(SEt)Fe(NO),], under the
presence of NO(g),15 the transformation of chelate—thiolate-
containing [(S(CH,);S)Fe(NO),]™ into the dark red-brown
{Fe(NO),}’ DNIC [Fe(NO),]” (1) (yield 53%) was
demonstrated when a tetrahydrofuran (THF) solution of
[(S(CH,);S)Fe(NO),]™ was treated with NO(g) at ambient
temperature for 30 min (Scheme 1ab). Complex 1,
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characterized by IR, UV—vis, electron paramagnetic resonance
(EPR), SQUID, X-ray absorption spectroscopy (XAS), and
single-crystal X-ray diffraction, is air-sensitive in the solid state
and the THF solution. Complex 1 exhibits the diagnostic IR
Uno Spectrum 1776 s, 1708 s, 1345 w cm ™ in KBr [Supporting
Information (SI), Figure S1], in which the stretching frequency
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1345 w cm ™' is assigned to the bent N—O vibration.*>'® The
slightly lower-energy NO bands of complex 1 shifted by ~4
cm™! from those of [(NO,),Fe(NO),]™ [1782's, 1712 s cm™!
(KBr)] reflect the similar electron-donating ability and binding
affinity of ligands [NO™] and [NO,] toward the {Fe(NO),}’
motif (SI, Experimental Section).'”* Compared with [(S-
(CH,);S)Fe(NO),]~, which is dominated by intense absorp-
tion bands at 366, 430, 578, and 807 nm (THF),"” complex 1
displays three absorption bands at 385, 473, and 744 nm
(THF). Consistent with the characteristic g value of {Fe-
(NO),}° DNICs,"” complex 1 displays an isotropic EPR
spectrum with a principal g value of 2.031 at 298 K and a
rhombic spectrum with g, = 2.063, g, = 2.033, and g; = 2.003 at
4K (g, = 2053, g, = 2030, g; = 2.013 at 77 K; SI, Figure S2).
Magnetic susceptibility data of a powdered sample of complex 1
were collected in the temperature range of 2—300 Kina 1 T
applied field. The effective magnetic moment () decreases
from 1.75 at 300 K to 149 at 2 K (SI, Figure S3). The
temperature-dependent magnetic moment in complex 1 may be
attributed to the dipolar coupling of the iron center and
nitroxyl ligands,'® consistent with the observed half-field signal
of the EPR spectrum at 4 K (SI, Figure S2). The Fe K-edge
preedge energy (Fe;s — Fe,; transition) of 7113.6 €V for
complex 1 lies within the range of 7113.4—7113.8 eV (S,
Figure S4), the characteristic preedge energy of mononuclear/
dinuclear {Fe(NO),}* DNICs."” From the CV study, the
electrochemistry of complex 1 displays an irreversible oxidation
process at room temperature.

The reaction sequences given in Scheme lab reasonably
account for the transformation of [(S(CH,);S)Fe(NO),]™ into
complex 1 along with byproduct 1,2-dithiolane triggered by
nitrosylation. The reaction proceeds via nitrosylation to yield
intermediate A containing the proposed {Fe(NO),}'" core and
a thiyl radical ligand.*® That is, nitrosylation of the {Fe(NO),}’
DNIC [(S(CH,);S)Fe(NO),]” undergoes thiolate-based oxi-
dation because density functional theory computations of
DNICs [(SR),Fe(NO),]~ (R = Ph, Et) indicate that the
highest occupied molecular orbital (HOMO) is dominated by
the thiolates’ contribution (87% and 77% of ligands [SPh™] and
[SEt”] for B3LYP, respectively; 62% and 56% of ligands
[SPh™] and [SEt™] for BP86, respectively), obtained in the
previous study.'”® The subsequent reduction of the incoming
NO(g) by intermediate A and the concomitant coordination of
nitroxyl lead to the formation of complex 1 accompanied by the
release of byproduct 1,2-dithiolane ([S(CH,);S]) identified by
"H NMR [§ 2.53 (s), 1.91 (s) ppm (CDCL,)].

The structure of the [Fe(NO),]” unit for complex 1 in
[PPN]* salt is shown in Figure 1. It is noticed that the Fel—
N3-03 and Fel-N4—04 bond angles of 106.8(7)° and
113.2(7)° are distinct from those [163.0(7)° and 160.9(8)°] of
Fel-N1-0O1 and Fel-N2—02. In the linear Fel-N1-01
and Fel-N2—02 bonds, the average Fe—N [Fel—N1
1.696(7) A and Fel-N2 1.719(8) A] and N-O [N1-01
1.174(8) A and N2—02 1.154(9) A] bond lengths of 1.707(7)
and 1.164(9) A fall within the ranges of 1.661(4)—1.695(3)
and 1.160(6)—1.178(3) A, respectively, observed in the
{Fe(NO),}’ DNICs."** Compared to the N—O bond distances
of 0.95, 1.15, and 1.26 A in NO*, the NO radical, and NO~,
respectively, the significantly longer N3—-03/N4-04
[1.380(12) and 1.280(12) A] and Fel—N3/Fel—N4

[2.008(11) and 2.045(10) A] bond distances reflect that
N3-03 and N4—04 of complex 1 may act as the nitroxyl-
coordinated ligands. 16¢ That is, the electronic structure of the

Figure 1. ORTEP drawing and labeling scheme of the [Fe(NO),]”
unit in [PPN]* salt with thermal ellipsoids drawn at 50% probability.
Selected bond distances (A) and angles (deg): Fel—-N1 1.696(7),
Fel—N2 1.719(8), Fel—N3 2.008(11), Fel—N4 2.045(10), N1-01
1.174(8), N2—02 1.154(9), N3—03 1.380(12), N4—04 1.280(12);
Fel-N1-01 163.0(7), Fel-N2—-02 160.9(8), Fel-N3—-03
106.8(7), Fel—=N4—04 113.2(7), N1—Fel—N2 111.7(4), N1—Fel—
N3 121.3(6), N1—Fel—N4 112.6(5) (SI, Table S4).

DNIC 1 is best described as a {Fe(NO),}’ motif coordinated
by two nitroxyl (NO™) ligands (or described as {Fe(NO), }13
based on the Enemark—Feltham electronic notation).' b
Presumably, the two groups of NO-coordinated ligands
([(NO™),Fe(NO),]”) should rapidly interconvert between
linear and bent coordination modes in a THF solution.

The geometry of the [Fe(NO),]™ anion is optimized in the
C, point group by high-level ab initio theory at the level of
SAC-CI using a direct algorithm (computational details were
described in the SI).>' The optimized structure agrees very well
with the experimental X-ray structure (SI, Table S1). The spin
density and charge distributions over each atom are analyzed at
this optimized structure and summarized in the SI, Table S2;
the results confirm that the electronic structure of this
converged geometry is an anion with the charge of 1—
distributed at each of the two bent NO sites, while the sum of
the charge distributed at a [Fe(NO),] motif is close to 1+. The
frontier orbitals show that SOMO—1 (HOMO) is a 7 bond
mainly contributed from all nitrogen atoms (minor contribu-
tion from an iron atom; Figure 2 and SI, Figure SS). Compared

(a) (b)

SOMO LuUMo

Figure 2. Frontier molecular orbitals of 1: (a) SOMO; (b) lowest
unoccupied molecular orbital (LUMO).

with the nonbonding singly occupied molecular orbital
(SOMO), the character of SOMO—2 (HOMO-1) is the ¢
bonds between the iron atom and two nitroxyl ligands, while
that of SOMO—3 (HOMO-2) is the 7 bonds between the iron
atom and two NO™ perpendicular to the 7 bond of SOMO—1
(SI, Figure SS). The atomic contribution of each molecular
orbital is shown in the SI, Table S3.

In summary, nitrosylation of the chelate—thiolate-containing
{Fe(NO),}’ DNIC [(S(CH,);S)Fe(NO),]” yields the tetrani-
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trosyliron complex 1 with NO as nitroxyl and nitrosyl ligands
within a single structure. The bent Fel-N3—03 and Fel—
N4—04 bonds [bond angles 106.8(7)° and 113.2(7)°,
respectively] and the significantly longer N3—03/N4—04
[1.380(12) and 1.280(12) A] and Fel—N3/Fel-N4
[2.008(11) and 2.045(10) A] bond distances reflect that the
electronic structure of 1 is best described as a {Fe(NO),}’
motif coordinated by two nitroxyl (NO™) ligands.

B ASSOCIATED CONTENT
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Experimental details concerning the synthesis, characterization,
and protonation of complex 1, EPR and SQUID experiments,
and crystallographic and computational details. This material is
available free of charge via the Internet at http://pubs.acs.org.
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